Conservative Matrices in Summability of Series

Dansheng Yu ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Hangzhou Normal University, Hangzhou Zhejiang 310036 China.

Abstract

Das [3] introduced the class of absolute k th-power conservative matrices for $k \geq 1$, denoted by $B\left(A_{k}\right)$. In the present paper, we generalize the class $B\left(A_{k}\right)$ to a general one named $B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)$ and give some sufficient conditions for a matrix belongs to the new class $B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)$ when φ is convex. As applications of the general result, we investigate the conservatives of Cesáro matrices and Riesz matrices.

1. Introduction

Let $\left\{s_{n}\right\}$ be the partial sums of the infinite series $\sum_{n=0}^{\infty} a_{n}$, The Cesáro means of order α of the series $\sum_{n=0}^{\infty} a_{n}$ are defined by

$$
\sigma_{n}^{\alpha}:=\frac{1}{A_{n}^{\alpha}} \sum_{j=0}^{n} A_{n-j}^{\alpha-1} s_{j}, n=0,1, \cdots
$$

where

$$
A_{n}^{\alpha}:=\frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1) \Gamma(n+1)}, \quad n=0,1, \cdots
$$

Let (C, α) be the Cesáro matrix of order α, that is, (C, α) be the lower triangular matrix $\left(A_{n-v}^{\alpha-1} / A_{n}^{\alpha}\right)$.
Flett [4] introduced the concept of absolute summability of order k. A series $\sum_{n=0}^{\infty} a_{n}$ is summable $|C, \alpha|_{k}, k \geq 1, \alpha>-1$, if

$$
\sum_{n=0}^{\infty} n^{k-1}\left|\sigma_{n-1}^{\alpha}-\sigma_{n}^{\alpha}\right|^{k}<\infty
$$

In 1970, Das [3] defined the so-called absolutely k th-power conservative matrix as follows: A matrix $T:=\left(t_{n j}\right)$ to be absolutely k th-power conservative for $k \geq 1$, denoted by $T \in B\left(A_{k}\right)$, that is, if $\left\{s_{n}\right\}$ satisfies

$$
\sum_{n=1}^{\infty} n^{k-1}\left|s_{n}-s_{n-1}\right|^{k}<\infty,
$$

[^0]then
$$
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$
where
$$
t_{n}=\sum_{j=0}^{n} t_{n j} s_{j} .
$$

Flett [4] established the following inclusion theorem for $|C, \alpha|_{k}$. If the series $\sum_{n=0}^{\infty} a_{n}$ is summable $|C, \alpha|_{k}$, it is also summable for $|C, \alpha|_{r}$ for each $r \geq k \geq 1, \alpha>-1, \beta>\alpha+\frac{1}{k}-\frac{1}{r}$. Especially, a series $\sum_{n=0}^{\infty} a_{n}$ which is $|C, \alpha|_{k}$ summability is also $|C, \beta|_{k}$ summability for $k \geq 1, \beta>\alpha>-1$.

If one sets $\alpha=0$, from the above inclusion result, we have
Theorem A. Let $k \geq 1$, then $(C, \alpha) \in B\left(A_{k}\right)$ for $\alpha>-1$.
Many authors have devoted themselves to generalize the results of Flett ([1], [2], [5], [6]). For example, the most recent works on this topic can be found in [5] and [6].

We first generalize the concept of the absolutely k th-power conservative to the following
Definition 1.1. Let $\varphi(x)$ be a nonnegative function defined on $[0, \infty),\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be nonnegative sequences. We say that a matrix

$$
T:=\left(t_{n j}\right) \in B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)
$$

if

$$
\sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\beta_{n}\left|s_{n}-s_{n-1}\right|\right)<\infty
$$

implies that

$$
\sum_{n=1}^{\infty} \gamma_{n} \varphi\left(\delta_{n}\left|t_{n}-t_{n-1}\right|\right)<\infty
$$

If $\alpha_{n}=\gamma_{n}=n^{-1}, \beta_{n}=\delta_{n}=n, \varphi(x)=x^{k}, k \geq 1$, then $B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)$ reduces to $B\left(A_{k}\right)$.
We will give a general result (Theorem 2.1) on the sufficient conditions for a matrix belongs to $B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)$ when φ is convex. As applications of the general result, we investigate the conservatives of Cesáro matrices and Riesz matrices (see Theorem 3.3-Theorem 3.5). Among them, Theorem 3.3 is an essential generalization of Theorem A in the case when $\alpha \geq 0$ (see remark after Theorem 3.3).

2. Main Result

Let $T:=\left(t_{n j}\right)$ be a lower triangular matrix, $\lambda=\left\{\lambda_{n}\right\}$ be a positive sequence. Set

$$
\begin{aligned}
& \widetilde{t}_{n i}:=\left\{\begin{array}{cc}
\sum_{j=i}^{n} t_{n j}-\sum_{j=i}^{n-1} t_{n-1, j}, & 0 \leq i \leq n-1, \\
t_{n n}, & i=n,
\end{array}\right. \\
& \widetilde{T}_{n}(\lambda):=\sum_{i=0}^{n} \lambda_{i}\left|\widetilde{t_{n i}}\right| .
\end{aligned}
$$

Theorem 2.1. Let $\varphi(x)$ be a nonnegative convex function defined on $[0, \infty), T:=\left(t_{n j}\right)$ be a lower triangular matrix satisfying $\sum_{j=0}^{n} t_{n j}=1$, and let $\left\{\alpha_{n}\right\}$ be a nonnegative sequence. If $\lambda=\left\{\lambda_{n}\right\}$ is a positive sequence such that ${ }^{1)}$

$$
\begin{equation*}
\lambda_{n}^{-1} \sum_{j=n}^{\infty} \alpha_{j}\left|\widetilde{t}_{j n}\right|\left(\widetilde{T}_{j}\left(\lambda^{-1}\right)\right)^{-1}=O\left(A_{n}\right), n \geq 1 \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
T \in B\left(A_{n}, \lambda_{n} ; \alpha_{n}\left(\widetilde{T}_{n}\left(\lambda^{-1}\right)\right)^{-1} ; \varphi\right) \tag{2}
\end{equation*}
$$

Proof. Since (set $s_{-1}:=0$)

$$
\begin{aligned}
t_{n} & =\sum_{j=0}^{n} t_{n j} s_{j}=\sum_{j=0}^{n} t_{n j}\left(\sum_{i=0}^{j}\left(s_{i}-s_{i-1}\right)\right) \\
& =\sum_{i=0}^{n}\left(s_{i}-s_{i-1}\right)\left(\sum_{j=i}^{n} t_{n j}\right),
\end{aligned}
$$

then

$$
\begin{aligned}
t_{n}-t_{n-1} & =\sum_{i=0}^{n}\left(s_{i}-s_{i-1}\right)\left(\sum_{j=i}^{n} t_{n j}\right)-\sum_{i=0}^{n-1}\left(s_{i}-s_{i-1}\right)\left(\sum_{j=i}^{n-1} t_{n-1, j}\right) \\
& =\sum_{i=0}^{n} \widetilde{t}_{n i}\left(s_{i}-s_{i-1}\right)=\sum_{i=1}^{n} \widetilde{t}_{n i}\left(s_{i}-s_{i-1}\right),
\end{aligned}
$$

where in the last inequality, we used the fact $\widetilde{t}_{n 0}=0$, which follows from $\sum_{j=0}^{n} t_{n j}=1$ and the definition of $\widetilde{t}_{n 0}$. Therefore,

$$
\left(\widetilde{T_{n}}\left(\lambda^{-1}\right)\right)^{-1}\left|t_{n}-t_{n-1}\right| \leq\left(\widetilde{T_{n}}\left(\lambda^{-1}\right)\right)^{-1} \sum_{i=0}^{n} \lambda_{i}^{-1}\left|\widetilde{t_{n i}}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)
$$

Since

$$
\left(\widetilde{T_{n}}\left(\lambda^{-1}\right)\right)^{-1} \sum_{i=0}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right|=1
$$

by the well-known Jensen's inequality and (1), we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\left(\widetilde{T}_{n}\left(\lambda^{-1}\right)\right)^{-1}\left|t_{n}-t_{n-1}\right|\right) \\
& \leq \sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\left(\widetilde{T_{n}}\left(\lambda^{-1}\right)\right)^{-1} \sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right) \\
& \leq \sum_{n=1}^{\infty} \alpha_{n}\left(\widetilde{T_{n}}\left(\lambda^{-1}\right)\right)^{-1} \sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right| \varphi\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right) \\
& =\sum_{n=1}^{\infty} \varphi\left(\lambda_{n}\left|s_{n}-s_{n-1}\right|\right) \lambda_{n}^{-1} \sum_{j=n}^{\infty} \alpha_{j}\left|\widetilde{t}_{j n}\right|\left(\widetilde{T}_{j}\left(\lambda^{-1}\right)\right)^{-1} \\
& =O(1) \sum_{n=1}^{\infty} A_{n} \varphi\left(\lambda_{n}\left|s_{n}-s_{n-1}\right|\right),
\end{aligned}
$$

[^1]which implies (2).

3. Applications of The Main Result

Lemma 3.1 ([7]). (i) A_{n}^{α} is positive for $\alpha>-1$, increasing (as a function ofn) for $\alpha>0$ and decreasing for $-1<\alpha<0$; and $A_{n}^{0}=1$ for all n.

$$
\text { (ii) } A_{n}^{\alpha} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)} .
$$

Lemma 3.2. For any $\varepsilon>0$, we have

$$
\begin{equation*}
\sum_{n=i}^{\infty} \frac{A_{n-i}^{\alpha-1}}{n^{\varepsilon} A_{n}^{\alpha}}=O\left(i^{-\varepsilon}\right), \alpha \geq 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=i}^{\infty} \frac{\left|A_{n-i}^{\alpha-1}\right|}{n^{\varepsilon} A_{n}^{\alpha}}=O\left(i^{-\varepsilon-\alpha}\right), \alpha<0 \tag{4}
\end{equation*}
$$

Proof. When $\varepsilon>0, \alpha \geq 0$, by Lemma 3.1, we get

$$
\begin{aligned}
\sum_{n=i}^{\infty} \frac{A_{n-i}^{\alpha-1}}{n^{\varepsilon} A_{n}^{\alpha}} & =O(1)\left(\frac{1}{i^{\varepsilon} A_{i}^{\alpha}} \sum_{n=i}^{2 i} A_{n-i}^{\alpha-1}+\sum_{n=2 i+1}^{\infty} \frac{A_{n-i}^{\alpha-1}}{n^{\varepsilon} A_{n}^{\alpha}}\right) \\
& =O(1)\left(\frac{1}{i^{\varepsilon} A_{i}^{\alpha}} \sum_{n=0}^{i} A_{n}^{\alpha-1}+\sum_{n=2 i+1}^{\infty} \frac{(n-i)^{\alpha-1}}{n^{\varepsilon+\alpha}}\right) \\
& =O(1)\left(i^{-\varepsilon}+\sum_{n=2 i+1}^{\infty} n^{-1-\varepsilon}\right) \\
& =O\left(i^{-\varepsilon}\right),
\end{aligned}
$$

which gives (3). When $\varepsilon>0, \alpha<0$, by Lemma 3.1, we get

$$
\sum_{n=i+1}^{2 i}\left|A_{n-i}^{\alpha-1}\right|=\left|\sum_{n=i+1}^{2 i} A_{n-i}^{\alpha-1}\right|=\left|\sum_{n=0}^{i} A_{n}^{\alpha-1}-A_{0}^{\alpha-1}\right|=\left|A_{i}^{\alpha}-A_{0}^{\alpha-1}\right|=O \text { (1) }
$$

and

$$
\sum_{n=2 i+1}^{\infty} \frac{\left|A_{n-i}^{\alpha-1}\right|}{n^{\varepsilon} A_{n}^{\alpha}}=O(1) \sum_{n=2 i+1}^{\infty} \frac{(n-i)^{\alpha-1}}{n^{\varepsilon+\alpha}}=O(1) \sum_{n=2 i+1}^{\infty} n^{-1-\varepsilon}=O\left(i^{-\varepsilon}\right)
$$

Therefore, we also have (4).
A non-negative sequence $\left\{a_{n}\right\}$ is said to be almost decreasing, if there is a positive constant K such that

$$
a_{n} \geq K a_{m}
$$

holds for all $n \leq m$, and it is said to be quasi- β-power increasing with some real number β, if $\left\{n^{\beta} a_{n}\right\}$ is almost decreasing.

Theorem 3.3. Let $\varphi(x)$ be a nonnegative convex function defined on $[0, \infty)$.
(A) If $\left\{\alpha_{n}\right\}$ is a nonnegative sequence such that $\left\{\alpha_{n}\right\}$ is quasi- ε-power decreasing for some $\varepsilon>0$. Then $(C, \alpha) \in B\left(\alpha_{n}, n ; \alpha_{n}, n ; \varphi\right), \alpha \geq 0$.
(B) If $k \geq 1, \delta<\frac{1}{k}, \gamma \in R$, then
$(C, \alpha) \in B\left(n^{\delta k-1} \log ^{\gamma} n, n ; n^{\delta k-1} \log ^{\gamma} n, n ; \varphi\right), \alpha \geq 0$.
Proof. Let

$$
t_{n j}:=\frac{A_{n-j}^{\alpha-1}}{A_{n}^{\alpha}}, j=0,1, \cdots, n ; \alpha>-1 .
$$

Then, for $0 \leq i \leq n-1$,

$$
\begin{align*}
\widetilde{t}_{n i} & =\frac{1}{A_{n}^{\alpha}} \sum_{j=i}^{n} A_{n-j}^{\alpha-1}-\frac{1}{A_{n-1}^{\alpha}} \sum_{j=i}^{n} A_{n-1-j}^{\alpha-1} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{j=0}^{n-i} A_{j}^{\alpha-1}-\frac{1}{A_{n-1}^{\alpha}} \sum_{j=0}^{n-1-i} A_{j}^{\alpha-1} \\
& =\frac{A_{n-i}^{\alpha}}{A_{n}^{\alpha}}-\frac{A_{n-1-i}^{\alpha}}{A_{n-1}^{\alpha}}=\frac{i}{n} \frac{A_{n-i}^{\alpha-1}}{A_{n}^{\alpha}}, \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{t}_{n n}=\frac{A_{0}^{\alpha-1}}{A_{n}^{\alpha}}=\frac{1}{A_{n}^{\alpha}} \tag{7}
\end{equation*}
$$

Taking $\lambda_{n}=n, n \geq 1$, by (6) and (7), we have

$$
\begin{equation*}
\widetilde{T}_{n}\left(\lambda^{-1}\right)=\sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right|=\frac{1}{n A_{n}^{\alpha}} \sum_{i=1}^{n} A_{n-i}^{\alpha-1}-\frac{A_{n}^{\alpha-1}}{n A_{n}^{\alpha}} \simeq \frac{1}{n}, n \geq 1 . \tag{8}
\end{equation*}
$$

By (8) and (3), we have

$$
\begin{aligned}
\lambda_{n}^{-1} \sum_{j=n}^{\infty} \alpha_{j}\left|\overleftarrow{t}_{j n}\right|\left(\widetilde{T}_{j}\left(\lambda^{-1}\right)\right)^{-1} & =\sum_{j=n}^{\infty} j \alpha_{j}\left(\frac{A_{j-n}^{\alpha-1}}{j A_{j}^{\alpha}}\right) \\
& =O\left(\sum_{j=n}^{\infty} j^{\varepsilon} \alpha_{j} \frac{A_{n-j}^{\alpha-1}}{j^{\varepsilon} A_{j}^{\alpha}}\right) \\
& =O\left(n^{\varepsilon} \alpha_{n} \sum_{j=n}^{\infty} \frac{A_{n-j}^{\alpha-1}}{j^{\varepsilon} A_{j}^{\alpha}}\right) \\
& =O\left(\alpha_{n}\right) .
\end{aligned}
$$

Therefore, applying Theorem 2.1, we obtain (A).
Let $\alpha_{n}=n^{\delta k-1} \log ^{\gamma} n, k \geq 1, \delta<\frac{1}{k}, \gamma \in R$. Since $\delta k-1<0$, there is an $\varepsilon>0$ such that $\varepsilon+\delta k-1<0$, hence $\left\{n^{\varepsilon} \alpha_{n}\right\}$ is almost decreasing. Therefore, (B) follows from (A).

Remark. Theorem A is (5) in the special case when $\delta=\gamma=0$ and $\varphi(x)=x^{k}, k \geq 1$.
Theorem 3.4. Let $\varphi(x)$ be a nonnegative convex function defined on $[0, \infty)$.
(A) If $\left\{\alpha_{n}\right\}$ is a nonnegative sequence such that $\left\{n^{\alpha} \alpha_{n}\right\}$ is quasi- ε-power decreasing for some $\varepsilon>0$. Then $(C, \alpha) \in B\left(\alpha_{n}, n ; \alpha_{n}, n ; \varphi\right),-1<\alpha<0$.
(B) If $k \geq 1, \delta<\frac{1-\alpha}{k}, \gamma \in R$, then

$$
\begin{equation*}
(C, \alpha) \in B\left(n^{\delta k-1} \log ^{\gamma} n, n ; n^{\delta k-1} \log ^{\gamma} n, n^{1+\alpha} ; \varphi\right),-1<\alpha<0 . \tag{9}
\end{equation*}
$$

Proof. When $-1<\alpha<0$, we have

$$
\begin{align*}
\widetilde{T}_{n}\left(\lambda^{-1}\right) & =\frac{1}{n A_{n}^{\alpha}} \sum_{i=1}^{n}\left|A_{n-i}^{\alpha-1}\right|=\frac{1}{n A_{n}^{\alpha}}\left|\sum_{i=1}^{n-1} A_{n-i}^{\alpha-1}\right|+\frac{A_{0}^{\alpha-1}}{n A_{n}^{\alpha}} \\
& =\frac{1}{n A_{n}^{\alpha}}\left|\sum_{i=0}^{n} A_{n-i}^{\alpha-1}-A_{n}^{\alpha-1}-A_{0}^{\alpha-1}\right|+\frac{1}{n A_{n}^{\alpha}} \\
& =\frac{1}{n A_{n}^{\alpha}}\left|A_{n}^{\alpha}-A_{n}^{\alpha-1}-A_{0}^{\alpha-1}\right|+\frac{1}{n A_{n}^{\alpha}} \\
& \geq C \frac{1}{n A_{n}^{\alpha}} \geq C n^{-(1+\alpha)} . \tag{10}
\end{align*}
$$

By (6), (4), (10) and noting that $\left\{n^{\alpha} \alpha_{n}\right\}$ is quasi- ε-power decreasing with $\varepsilon>0$, we have

$$
\begin{aligned}
\lambda_{n}^{-1} \sum_{j=n}^{\infty} \alpha_{j}\left|\tau_{j n}\right|\left(\widetilde{T_{j}}\left(\lambda^{-1}\right)\right)^{-1} & =O(1) \sum_{j=n}^{\infty} j^{1+\alpha} \alpha_{j}\left(\frac{\left|A_{j-n}^{\alpha-1}\right|}{j A_{j}^{\alpha}}\right) \\
& =O(1) \sum_{j=n}^{\infty} j^{\alpha+\varepsilon} \alpha_{j} \frac{\left|A_{j-n}^{\alpha-1}\right|}{j^{\varepsilon} A_{j}^{\alpha}} \\
& =O\left(n^{\alpha+\varepsilon} \alpha_{n} \sum_{j=n}^{\infty} \frac{\left|A_{j-n}^{\alpha-1}\right|}{j^{\varepsilon} A_{j}^{\alpha}}\right) \\
& =O\left(\alpha_{n}\right),
\end{aligned}
$$

which together with Theorem A yields to (A).
(B) can be deduced from (A) directly.

Theorem 3.5. Let $\varphi(x)$ be a nonnegative convex function defined on $[0, \infty),\left\{\alpha_{n}\right\}$ be a nonnegative sequence and $\lambda=\left\{\lambda_{n}\right\}$ be a positive sequence. Let $T=\left(t_{n j}\right)$ be a lower triangular matrix with the entries having the form $\frac{p_{j}}{P_{n}}$, where $p_{j}>0$ for $0 \leq j \leq n$ and $P_{n}=\sum_{j=0}^{n} p_{j}$. If

$$
\begin{equation*}
n \lambda_{n}^{-1} P_{n-1}=O\left(\sum_{i=1}^{n} \lambda_{i}^{-1} P_{i-1}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=n}^{\infty} \frac{\alpha_{j} \lambda_{j}}{j P_{j-1}}=O\left(\frac{\alpha_{n} \lambda_{n}}{P_{n-1}}\right) \tag{12}
\end{equation*}
$$

then

$$
T \in B\left(\alpha_{n}, \lambda_{n} ; \alpha_{n}, \frac{\lambda_{n} P_{n}}{n p_{n}} ; \varphi\right)
$$

Proof. First, we have

$$
\begin{align*}
\widetilde{t}_{n i} & =\sum_{j=i}^{n} t_{n j}-\sum_{j=i}^{n-1} t_{n j} \\
& =\frac{p_{n}}{P_{n}}+\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) \sum_{j=i}^{n-1} p_{j} \\
& =\frac{p_{n}}{P_{n}}-\frac{p_{n}}{P_{n} P_{n-1}}\left(P_{n-1}-P_{i-1}\right) \\
& =\frac{p_{n} P_{i-1}}{P_{n} P_{n-1}}, 1 \leq i \leq n-1, \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{t}_{n 0}=0, \widetilde{t}_{n n}=\frac{p_{n}}{P_{n}} \tag{14}
\end{equation*}
$$

By (11), we have

$$
\begin{equation*}
\left(\widetilde{T}_{n}\left(\lambda^{-1}\right)\right)^{-1}=\left(\frac{p_{n}}{P_{n} P_{n-1}} \sum_{i=1}^{n} \lambda_{i}^{-1} P_{i-1}\right)^{-1}=O\left(\frac{\lambda_{n} P_{n}}{n p_{n}}\right) \tag{15}
\end{equation*}
$$

By (12)-(14), we have

$$
\begin{align*}
\lambda_{n}^{-1} \sum_{j=n}^{\infty} \alpha_{j}\left|\widetilde{t}_{j n}\right|\left(\widetilde{T}_{j}\left(\lambda^{-1}\right)\right)^{-1} & =O\left(\lambda_{n}^{-1} P_{n-1} \sum_{j=n}^{\infty} \frac{\alpha_{j} \lambda_{j}}{j P_{j-1}}\right) \\
& =O\left(\alpha_{n}\right) \tag{16}
\end{align*}
$$

We obtain Theorem 3.5 by combining Theorem 2.1 with (15) and (16).
Now, we give a special application of Theorem 3.5.
Let

$$
\begin{aligned}
& p_{0}=1, p_{n}=n^{\alpha}, n \geq 1, \alpha>-1, \\
& \lambda_{n}=n, n \geq 1,
\end{aligned}
$$

and

$$
\alpha_{n}=n^{\delta k-1}, n \geq 1, \quad k>0, \delta<\frac{1+\alpha}{k} .
$$

Then

$$
\sum_{i=1}^{n} \lambda_{i}^{-1} P_{i-1} \simeq \sum_{i=1}^{n} i^{\alpha} \simeq n^{\alpha+1} \simeq n \lambda_{n}^{-1} P_{n-1}
$$

and (note that $\delta k-2-\alpha<-1$)

$$
\begin{aligned}
\sum_{j=n}^{\infty} \frac{\alpha_{j} \lambda_{j}}{j P_{j-1}} & =O(1) \sum_{j=n}^{\infty} j^{\delta k-2-\alpha} \\
& =O\left(n^{-\delta k-1-\alpha}\right) \\
& =O\left(\frac{\alpha_{n} \lambda_{n}}{P_{n-1}}\right)
\end{aligned}
$$

Therefore, Theorem 3.5 yields to

$$
T \in B\left(n^{\delta k-1}, n ; n^{\delta k-1}, n ; \varphi\right) .
$$

In particular, taking $\delta=0, \varepsilon=1, k \geq 1$, we have $T \in B\left(A_{k}\right)$.

References

[1] H. Bor, A note on two summability methods, Proc. amer. Math. Soc., 98(1986), 81-84.
[2] H. Bor, A new application of quasi power increasing sequences. II, Fixed Point Theory and Applications 2013, 2013:75 doi:10.1186/1687-1812-2013-75.
[3] G. Das, A tauberian theorem for absolute summability, Proc. Cambridge. Philos. Soc. 67(1970), 321-326.
[4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[5] M. A. Sarigöl, Matrix operators on sequence A_{k}, Math. Comput. Modelling, 55(2012), 1763-1769.
[6] D. S. Yu, On a result of Flett for Cesáro matrices, Appl. Math. Letter, 22(2009), 1803-1809.
[7] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1977.

[^0]: 2010 Mathematics Subject Classification. Primary 40F05, 40D25
 Keywords. Conservative Matrices, summability of series.
 Received: 11 September 2013; Accepted: 27 November 2013
 Communicated by Dragan Djordjević
 Research of the author is supported by NSF of China (10901044), and program for Excellent Young Teachers in HZNU
 Email address: dsyu math@163.com (Dansheng Yu)

[^1]: ${ }^{1)}$ Denote by $\lambda^{-1}=\left\{\lambda_{n}^{-1}\right\}$.

