
Filomat 29:5 (2015), 1085–1092
DOI 10.2298/FIL1505085Y

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Das [3] introduced the class of absolute kth-power conservative matrices for k ≥ 1, denoted by
B (Ak) . In the present paper, we generalize the class B (Ak) to a general one named B

(
αn, βn;γn, δn;ϕ

)
and

give some sufficient conditions for a matrix belongs to the new class B
(
αn, βn;γn, δn;ϕ

)
whenϕ is convex.As

applications of the general result, we investigate the conservatives of Cesáro matrices and Riesz matrices.

1. Introduction

Let {sn} be the partial sums of the infinite series
∑
∞

n=0 an, The Cesáro means of order α of the series
∑
∞

n=0 an
are defined by

σαn :=
1

Aα
n

n∑
j=0

Aα−1
n− j s j, n = 0, 1, · · · ,

where

Aα
n :=

Γ (n + α + 1)
Γ (α + 1) Γ (n + 1)

, n = 0, 1, · · · .

Let (C, α) be the Cesáro matrix of order α, that is, (C, α) be the lower triangular matrix
(
Aα−1

n−ν/A
α
n

)
.

Flett [4] introduced the concept of absolute summability of order k. A series
∑
∞

n=0 an is summable
|C, α|k , k ≥ 1, α > −1, if

∞∑
n=0

nk−1
∣∣∣σαn−1 − σ

α
n

∣∣∣k < ∞.
In 1970, Das [3] defined the so-called absolutely kth-power conservative matrix as follows: A matrix

T :=
(
tnj

)
to be absolutely kth-power conservative for k ≥ 1, denoted by T ∈ B (Ak) , that is, if {sn} satisfies

∞∑
n=1

nk−1
|sn − sn−1|

k < ∞,
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then

∞∑
n=1

nk−1
|tn − tn−1|

k < ∞,

where

tn =

n∑
j=0

tnjs j.

Flett [4] established the following inclusion theorem for |C, α|k. If the series
∑
∞

n=0 an is summable |C, α|k ,
it is also summable for |C, α|r for each r ≥ k ≥ 1, α > −1, β > α + 1

k −
1
r . Especially, a series

∑
∞

n=0 an which is
|C, α|k summability is also

∣∣∣C, β∣∣∣k summability for k ≥ 1, β > α > −1.
If one sets α = 0, from the above inclusion result, we have
Theorem A. Let k ≥ 1, then (C, α) ∈ B (Ak) for α > −1.
Many authors have devoted themselves to generalize the results of Flett ([1], [2], [5], [6]). For example,

the most recent works on this topic can be found in [5] and [6].
We first generalize the concept of the absolutely kth-power conservative to the following

Definition 1.1. Let ϕ (x) be a nonnegative function defined on [0,∞) , {αn},
{
βn

}
,
{
γn

}
and {δn} be nonnegative

sequences. We say that a matrix

T :=
(
tnj

)
∈ B

(
αn, βn;γn, δn;ϕ

)
,

if

∞∑
n=1

αnϕ
(
βn |sn − sn−1|

)
< ∞,

implies that

∞∑
n=1

γnϕ (δn |tn − tn−1|) < ∞.

If αn = γn = n−1, βn = δn = n, ϕ (x) = xk, k ≥ 1, then B
(
αn, βn;γn, δn;ϕ

)
reduces to B (Ak) .

We will give a general result (Theorem 2.1) on the sufficient conditions for a matrix belongs to
B
(
αn, βn;γn, δn;ϕ

)
when ϕ is convex. As applications of the general result, we investigate the conser-

vatives of Cesáro matrices and Riesz matrices (see Theorem 3.3-Theorem 3.5). Among them, Theorem 3.3
is an essential generalization of Theorem A in the case when α ≥ 0 (see remark after Theorem 3.3).

2. Main Result

Let T :=
(
tnj

)
be a lower triangular matrix, λ = {λn} be a positive sequence. Set

t̃ni :=
{ ∑n

j=i tnj −
∑n−1

j=i tn−1, j, 0 ≤ i ≤ n − 1,
tnn, i = n,

T̃n (λ) :=
n∑

i=0

λi

∣∣∣̃tni

∣∣∣ .
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Theorem 2.1. Let ϕ (x) be a nonnegative convex function defined on [0,∞), T :=
(
tnj

)
be a lower triangular matrix

satisfying
∑n

j=0 tnj = 1, and let {αn} be a nonnegative sequence. If λ = {λn} is a positive sequence such that 1)

λ−1
n

∞∑
j=n

α j

∣∣∣̃t jn

∣∣∣ (T̃ j

(
λ−1

))−1
= O (An) , n ≥ 1, (1)

then

T ∈ B
(
An, λn;αn,

(
T̃n

(
λ−1

))−1
;ϕ

)
. (2)

Proof. Since (set s−1 := 0)

tn =

n∑
j=0

tnjs j =

n∑
j=0

tnj

 j∑
i=0

(si − si−1)


=

n∑
i=0

(si − si−1)

 n∑
j=i

tnj

 ,
then

tn − tn−1 =

n∑
i=0

(si − si−1)

 n∑
j=i

tnj

 − n−1∑
i=0

(si − si−1)

n−1∑
j=i

tn−1, j


=

n∑
i=0

t̃ni (si − si−1) =

n∑
i=1

t̃ni (si − si−1) ,

where in the last inequality, we used the fact t̃n0 = 0, which follows from
∑n

j=0 tnj = 1 and the definition of
t̃n0. Therefore,(

T̃n

(
λ−1

))−1
|tn − tn−1| ≤

(
T̃n

(
λ−1

))−1
n∑

i=0

λ−1
i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|) .

Since (
T̃n

(
λ−1

))−1
n∑

i=0

λ−1
i

∣∣∣̃tni

∣∣∣ = 1,

by the well-known Jensen’s inequality and (1), we get
∞∑

n=1

αnϕ
((

T̃n

(
λ−1

))−1
|tn − tn−1|

)
≤

∞∑
n=1

αnϕ

(T̃n

(
λ−1

))−1
n∑

i=1

λ−1
i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|)


≤

∞∑
n=1

αn

(
T̃n

(
λ−1

))−1
n∑

i=1

λ−1
i

∣∣∣̃tni

∣∣∣ϕ (λi |si − si−1|)

=

∞∑
n=1

ϕ (λn |sn − sn−1|)λ−1
n

∞∑
j=n

α j

∣∣∣̃t jn

∣∣∣ (T̃ j

(
λ−1

))−1

= O (1)
∞∑

n=1

Anϕ (λn |sn − sn−1|) ,

1)Denote by λ−1 = {λ−1
n }.
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which implies (2).

3. Applications of The Main Result

Lemma 3.1 ([7]). (i)Aα
n is positive forα > −1, increasing (as a function of n) forα > 0 and decreasing for−1 < α < 0;

and A0
n = 1 for all n.

(ii) Aα
n '

nα
Γ(α+1) .

Lemma 3.2. For any ε > 0, we have

∞∑
n=i

Aα−1
n−i

nεAα
n

= O
(
i−ε

)
, α ≥ 0, (3)

and

∞∑
n=i

∣∣∣Aα−1
n−i

∣∣∣
nεAα

n
= O

(
i−ε−α

)
, α < 0. (4)

Proof. When ε > 0, α ≥ 0, by Lemma 3.1, we get

∞∑
n=i

Aα−1
n−i

nεAα
n

= O (1)

 1
iεAα

i

2i∑
n=i

Aα−1
n−i +

∞∑
n=2i+1

Aα−1
n−i

nεAα
n


= O (1)

 1
iεAα

i

i∑
n=0

Aα−1
n +

∞∑
n=2i+1

(n − i)α−1

nε+α


= O (1)

i−ε +

∞∑
n=2i+1

n−1−ε


= O

(
i−ε

)
,

which gives (3). When ε > 0, α < 0, by Lemma 3.1, we get

2i∑
n=i+1

∣∣∣Aα−1
n−i

∣∣∣ =

∣∣∣∣∣∣∣
2i∑

n=i+1

Aα−1
n−i

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
i∑

n=0

Aα−1
n − Aα−1

0

∣∣∣∣∣∣∣ =
∣∣∣Aα

i − Aα−1
0

∣∣∣ = O (1)

and

∞∑
n=2i+1

∣∣∣Aα−1
n−i

∣∣∣
nεAα

n
= O (1)

∞∑
n=2i+1

(n − i)α−1

nε+α
= O (1)

∞∑
n=2i+1

n−1−ε = O
(
i−ε

)
,

Therefore, we also have (4).

A non-negative sequence {an} is said to be almost decreasing, if there is a positive constant K such that

an ≥ Kam

holds for all n ≤ m, and it is said to be quasi-β−power increasing with some real number β, if
{
nβan

}
is almost

decreasing.
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Theorem 3.3. Let ϕ (x) be a nonnegative convex function defined on [0,∞) .
(A) If {αn} is a nonnegative sequence such that {αn} is quasi-ε−power decreasing for some ε > 0. Then

(C, α) ∈ B
(
αn,n;αn,n;ϕ

)
, α ≥ 0.

(B) If k ≥ 1, δ < 1
k , γ ∈ R, then

(C, α) ∈ B
(
nδk−1 logγ n,n; nδk−1 logγ n,n;ϕ

)
, α ≥ 0. (5)

Proof. Let

tnj :=
Aα−1

n− j

Aα
n
, j = 0, 1, · · · ,n; α > −1.

Then, for 0 ≤ i ≤ n − 1,

t̃ni =
1

Aα
n

n∑
j=i

Aα−1
n− j −

1
Aα

n−1

n∑
j=i

Aα−1
n−1− j

=
1

Aα
n

n−i∑
j=0

Aα−1
j −

1
Aα

n−1

n−1−i∑
j=0

Aα−1
j

=
Aα

n−i

Aα
n
−

Aα
n−1−i

Aα
n−1

=
i
n

Aα−1
n−i

Aα
n
, (6)

and

t̃nn =
Aα−1

0

Aα
n

=
1

Aα
n
. (7)

Taking λn = n, n ≥ 1, by (6) and (7), we have

T̃n

(
λ−1

)
=

n∑
i=1

λ−1
i

∣∣∣̃tni

∣∣∣ =
1

nAα
n

n∑
i=1

Aα−1
n−i −

Aα−1
n

nAα
n
'

1
n
, n ≥ 1. (8)

By (8) and (3), we have

λ−1
n

∞∑
j=n

α j

∣∣∣̃t jn

∣∣∣ (T̃ j

(
λ−1

))−1
=

∞∑
j=n

jα j

Aα−1
j−n

jAα
j


= O

 ∞∑
j=n

jεα j

Aα−1
n− j

jεAα
j


= O

nεαn

∞∑
j=n

Aα−1
n− j

jεAα
j


= O (αn) .

Therefore, applying Theorem 2.1, we obtain (A).
Let αn = nδk−1 logγ n, k ≥ 1, δ < 1

k , γ ∈ R. Since δk− 1 < 0, there is an ε > 0 such that ε+ δk− 1 < 0, hence
{nεαn} is almost decreasing. Therefore, (B) follows from (A).
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Remark. Theorem A is (5) in the special case when δ = γ = 0 and ϕ (x) = xk, k ≥ 1.

Theorem 3.4. Let ϕ (x) be a nonnegative convex function defined on [0,∞) .
(A) If {αn} is a nonnegative sequence such that {nααn} is quasi-ε−power decreasing for some ε > 0. Then

(C, α) ∈ B
(
αn,n;αn,n;ϕ

)
, −1 < α < 0.

(B) If k ≥ 1, δ < 1−α
k , γ ∈ R, then

(C, α) ∈ B
(
nδk−1 logγ n,n; nδk−1 logγ n,n1+α;ϕ

)
, −1 < α < 0. (9)

Proof. When −1 < α < 0, we have

T̃n

(
λ−1

)
=

1
nAα

n

n∑
i=1

∣∣∣Aα−1
n−i

∣∣∣ =
1

nAα
n

∣∣∣∣∣∣∣
n−1∑
i=1

Aα−1
n−i

∣∣∣∣∣∣∣ +
Aα−1

0

nAα
n

=
1

nAα
n

∣∣∣∣∣∣∣
n∑

i=0

Aα−1
n−i − Aα−1

n − Aα−1
0

∣∣∣∣∣∣∣ +
1

nAα
n

=
1

nAα
n

∣∣∣Aα
n − Aα−1

n − Aα−1
0

∣∣∣ +
1

nAα
n

≥ C
1

nAα
n
≥ Cn−(1+α). (10)

By (6), (4), (10) and noting that {nααn} is quasi-ε−power decreasing with ε > 0, we have

λ−1
n

∞∑
j=n

α j

∣∣∣̃t jn

∣∣∣ (T̃ j

(
λ−1

))−1
= O (1)

∞∑
j=n

j1+αα j


∣∣∣∣Aα−1

j−n

∣∣∣∣
jAα

j


= O (1)

∞∑
j=n

jα+εα j

∣∣∣∣Aα−1
j−n

∣∣∣∣
jεAα

j

= O

nα+εαn

∞∑
j=n

∣∣∣∣Aα−1
j−n

∣∣∣∣
jεAα

j


= O (αn) ,

which together with Theorem A yields to (A).
(B) can be deduced from (A) directly.

Theorem 3.5. Let ϕ (x) be a nonnegative convex function defined on [0,∞) , {αn} be a nonnegative sequence and
λ = {λn} be a positive sequence. Let T =

(
tnj

)
be a lower triangular matrix with the entries having the form p j

Pn
, where

p j > 0 for 0 ≤ j ≤ n and Pn =
∑n

j=0 p j. If

nλ−1
n Pn−1 = O

 n∑
i=1

λ−1
i Pi−1

 , (11)

and
∞∑

j=n

α jλ j

jP j−1
= O

(
αnλn

Pn−1

)
, (12)
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then

T ∈ B
(
αn, λn;αn,

λnPn

npn
;ϕ

)
.

Proof. First, we have

t̃ni =

n∑
j=i

tnj −

n−1∑
j=i

tnj

=
pn

Pn
+

( 1
Pn
−

1
Pn−1

) n−1∑
j=i

p j

=
pn

Pn
−

pn

PnPn−1
(Pn−1 − Pi−1)

=
pnPi−1

PnPn−1
, 1 ≤ i ≤ n − 1, (13)

and

t̃n0 = 0, t̃nn =
pn

Pn
. (14)

By (11), we have

(
T̃n

(
λ−1

))−1
=

 pn

PnPn−1

n∑
i=1

λ−1
i Pi−1


−1

= O
(
λnPn

npn

)
. (15)

By (12)-(14), we have

λ−1
n

∞∑
j=n

α j

∣∣∣̃t jn

∣∣∣ (T̃ j

(
λ−1

))−1
= O

λ−1
n Pn−1

∞∑
j=n

α jλ j

jP j−1


= O (αn) . (16)

We obtain Theorem 3.5 by combining Theorem 2.1 with (15) and (16).

Now, we give a special application of Theorem 3.5.
Let

p0 = 1, pn = nα, n ≥ 1, α > −1,

λn = n, n ≥ 1,

and

αn = nδk−1, n ≥ 1, k > 0, δ <
1 + α

k
.

Then

n∑
i=1

λ−1
i Pi−1 '

n∑
i=1

iα ' nα+1
' nλ−1

n Pn−1,
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and (note that δk − 2 − α < −1)

∞∑
j=n

α jλ j

jP j−1
= O (1)

∞∑
j=n

jδk−2−α

= O
(
n−δk−1−α

)
= O

(
αnλn

Pn−1

)
,

Therefore, Theorem 3.5 yields to

T ∈ B
(
nδk−1,n; nδk−1,n;ϕ

)
.

In particular, taking δ = 0, ε = 1, k ≥ 1, we have T ∈ B (Ak) .
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